Department of Mathematics Jhargram Raj College Class: Mathematics(H) Sem-III

Topic: C5 (All Units)

Date: 31.10.19

- 1. Show that $\lim_{x\to 0} \frac{x-|x|}{x}$ does not exist.
- 2. Find $\lim_{x\to 0} \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}+1}$.
- 3. Show that the function $f(x) = x \frac{e^{\frac{1}{x}} e^{\frac{-1}{x}}}{e^{\frac{1}{x}} + e^{\frac{-1}{x}}}$, $x \neq 0 \& f(0) = 0$ is continuous at 0.
- 4. Show that the function $f(x) = \frac{e^{\frac{1}{x^2}}}{1 e^{\frac{1}{x^2}}}, x \neq 0 \& f(0) = 0$ is discontinuous at 0.
- 5. Let $f(x) = x, -1 \le x \le 1 \& f(x+2) = f(x) \forall x \in \mathbb{R}$. Show that f is discontinuous at every odd integer.
- 6. Suppose the function $f: \mathbb{R} \to \mathbb{R}$ has limit L at 0 and a > 0. If $g: \mathbb{R} \to \mathbb{R}$ is defined by $g(x) = f(ax), x \in \mathbb{R}$, show that $\lim_{x\to 0} g(x) = L$.
- 7. Let $c \in \mathbb{R} \& f : \mathbb{R} \to \mathbb{R} \ s. t. \lim_{x \to c} (f(x))^2 = L$. Show that if L=0 then $\lim_{x \to c} f(x) = 0$. Show by an example that if $L \neq 0$ then f may have no limit at c.
- 8. Let h: $\mathbb{R} \to \mathbb{R}$ be continuous on \mathbb{R} such that $h\left(\frac{m}{2n}\right) = 0 \forall m \in \mathbb{Z}$, $n \in \mathbb{N}$. Show that $h(x) = 0 \ \forall \ x \in \mathbb{R}.$
- $n(x) = 0 \forall x \in \mathbb{K}.$ 9. $f: \mathbb{R} \to \mathbb{R}$ such that $f\left(\frac{x+y}{2}\right) = \frac{1}{2}(f(x) + f(y)) \forall x, y \in \mathbb{R}.$ Show that f(x) = kx + a, for some k and a. 10. Let a,b >1 and let f be a bounded function on [0,1] such that $f(ax)=bf(x) \ 0 \le x \le \frac{1}{a}.$ Show that f is continuous at $0 \le x$
- Show that f is continuous at $0\times^{0}$
- 11. $f: \mathbb{R} \to \mathbb{R}$ be continuous and periodic with period 1. Show that (i) f is bounded above and below and achieves its maximum and minimum (ii) $\exists x_0 \in \mathbb{R}$ such that $f(x_0 + \pi) =$ $f(x_0)$ (iii) f is uniformly continuous on \mathbb{R} .
- 12. Assume that $f: \mathbb{R} \to \mathbb{R}$ satisfies $f(f(x)) = -x \forall x \in \mathbb{R}$. Show that f can't be continuous on \mathbb{R}
- 13. Let $f:[a,b] \rightarrow \mathbb{R}$ be continuous in [a,b], differentiable on (a,b). Show that $\exists \theta \in (a,b)$ such that $f(\theta) = \frac{1}{a-\theta} + \frac{1}{b-\theta}$.
- 14. Show that the equation $x \ln x = 3 x$ has at least one root in (1,3).
- 15. Let f be differentiable on \mathbb{R} with $a = \sup\{f'(x) \mid x \in \mathbb{R}\} < 1$. Select $s_0 \in \mathbb{R}$ and define $s_n = f(s_{n-1}), n \ge 1$. Prove that $\{s_n\}$ is a convergent sequence.

References: 1. Elements of Real Analysis by Shanti Narayan.

- 2. Introduction to Real Analysis by Robert Bartle and D.Sherbert.
 - 3. First Course in Real Analysis by Subir Kr. Mukherjee.