Department of Mathematics
 Jhargram Raj College
 Class: Mathematics(H) Sem-III

Topic: C5 (All Units)
Date: 31.10.19

1. Show that $\lim _{x \rightarrow 0} \frac{x-|x|}{x}$ does not exist.
2. Find $\lim _{x \rightarrow 0} \frac{e^{\frac{1}{x}}}{e^{\frac{1}{x}}+1}$.
3. Show that the function $f(x)=x \frac{e^{\frac{1}{x}}-e^{\frac{-1}{x}}}{e^{\frac{1}{x}}+e^{\frac{-1}{x}}}, x \neq 0 \& f(0)=0$ is continuous at 0 .
4. Show that the function $f(x)=\frac{e^{\frac{1}{x^{2}}}}{1-e^{\frac{1}{x^{2}}}}, x \neq 0 \& f(0)=0$ is discontinuous at 0 .
5. Let $f(x)=x,-1 \leq x \leq 1 \& f(x+2)=f(x) \forall x \in \mathbb{R}$. Show that fis discontinuous at every odd integer.
6. Suppose the function $f: \mathbb{R} \rightarrow \mathbb{R}$ has limit L at 0 and $a>0$. If $g: \mathbb{R} \rightarrow \mathbb{R}$ is defined by $g(x)=f(a x), x \in \mathbb{R}$, show that $\lim _{x \rightarrow 0} g(x)=L$.
7. Let $c \in \mathbb{R} \& f: \mathbb{R} \rightarrow \mathbb{R}$ s.t. $\lim _{x \rightarrow c}(f(x))^{2}=L$. Show that if $L=0$ then $\lim _{x \rightarrow c} f(x)=0$. Show by an example that if $L \neq 0$ then f may have no linit at c .
8. Let $h: \mathbb{R} \rightarrow \mathbb{R}$ be continuous on \mathbb{R} such that $h\left(\frac{m}{2^{n}}\right)=0 \forall m \in \mathbb{Z}, n \in \mathbb{N}$. Show that $h(x)=0 \forall x \in \mathbb{R}$.
9. $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f\left(\frac{x+y}{2}\right)=\frac{1}{2}(f(x)+f(y)) \forall x, y \in \mathbb{R}$. Show that $f(x)=k x+a$, for some k and a .
10. Let $\mathrm{a}, \mathrm{b}>1$ and let f be a bounded function on [0,1] such that $\mathrm{f}(\mathrm{ax})=\mathrm{bf}(\mathrm{x}) 0 \leq x \leq \frac{1}{a}$. Show that f is continuous at $0 \mathrm{c}^{\circ}$
11. $f: \mathbb{R} \rightarrow \mathbb{R}$ be continuous and periodic with period 1 . Show that (i) f is bounded above and below and achieves its maximum and minimum (ii) $\exists x_{0} \in \mathbb{R}$ such that $f\left(x_{0}+\pi\right)=$ $f\left(x_{0}\right)$ (iii) f is uniformly continuous on \mathbb{R}.
12. Assume that $f: \mathbb{R} \rightarrow \mathbb{R}$ satisfies $f(f(x))=-x \forall x \in \mathbb{R}$. Show that f can't be continuous on \mathbb{R}
13. Let $f:[a, b] \rightarrow \mathbb{R}$ be continuous in $[\mathrm{a}, \mathrm{b}]$, differentiable on (a, b). Show that $\exists \theta \in(a, b)$ such that $\frac{f^{f} f(\theta)}{f(\theta)}=\frac{1}{a-\theta}+\frac{1}{b-\theta}$.
14. Show that the equation $x \ln x=3-x$ has at least one root in $(1,3)$.
15. Let f be differentiable on \mathbb{R} with $\left.a=\sup \mathrm{m}^{\prime} f^{\prime}(x) \mid: x \in \mathbb{R}\right\}<1$. Select $s_{0} \in \mathbb{R}$ and - defíne $s_{n}=f\left(s_{n-1}\right), n \geq 1$. Prove that $\left\{s_{n}\right\}$ is a convergent sequence.

References: 1. Elements of Real Analysis by Shanti Narayan.

2. Introduction to Real Analysis by Robert Bartle and D.Sherbert. 3. First Course in Real Analysis by Subir Kr. Mukherjee.
